

APPROVAL SHEET

Approval Specification	Customer's Approval Certificate
TO:	Please return this copy as a certification of your approval
Part No.:	Checked & Approved by:
Customer's Part No.:	Date:

BEIJING ZHONGXUN SIFANG SCIENCE & TECHNOLOGY CO.,LTD.

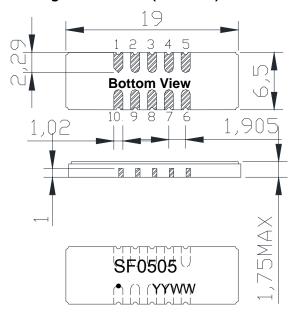
Tel: +86-010-58937383
Fax: +86-010-58937263
E-mail: bjzxsf@bjzxsf.net
Website: http://www.bjzxsf.net

Add: No 201, Block A. Building 3. Yongjie Beilu

Yongfeng high-tech industrial base Haidian District Beijing city

Part No.	:	SF0505
Pages	:	6
Date	:	2015/3/25
Revision	:	1.0

Prepared by:	梁浩
Checked by:	gla g
Approved by:	马拉上


Application

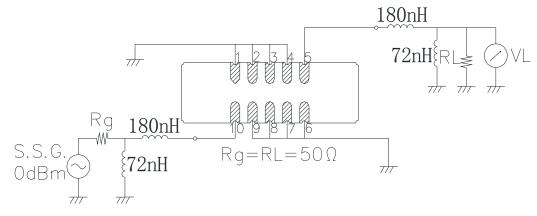
- Low -loss SAW component
- Low amplitude ripple
- Sharp rejections at both out-bands

Features

- Ceramic Package for Surface Mounted Technology (SMT)
- RoHS compatible
- Package size 19.00x6.50x1.75mm³
- Package Code SMD19
- Electrostatic Sensitive Device(ESD)

Package Dimensions (Unit: mm)

Test Circuit(Bottom View)


Pin Configuration

Pin No.	Description
10	Input
5	Output
1,2,3,4,6,7,8,9	Ground

Marking Description

S	Trademark
F	SAW Filter
0505	Part Number
•	Pin 1
YYWW	Year Code & Week Code

*Fig: If the products produced in 06th week of 2012, The year code & week code is 1206.

Please read notes at the end of this document.

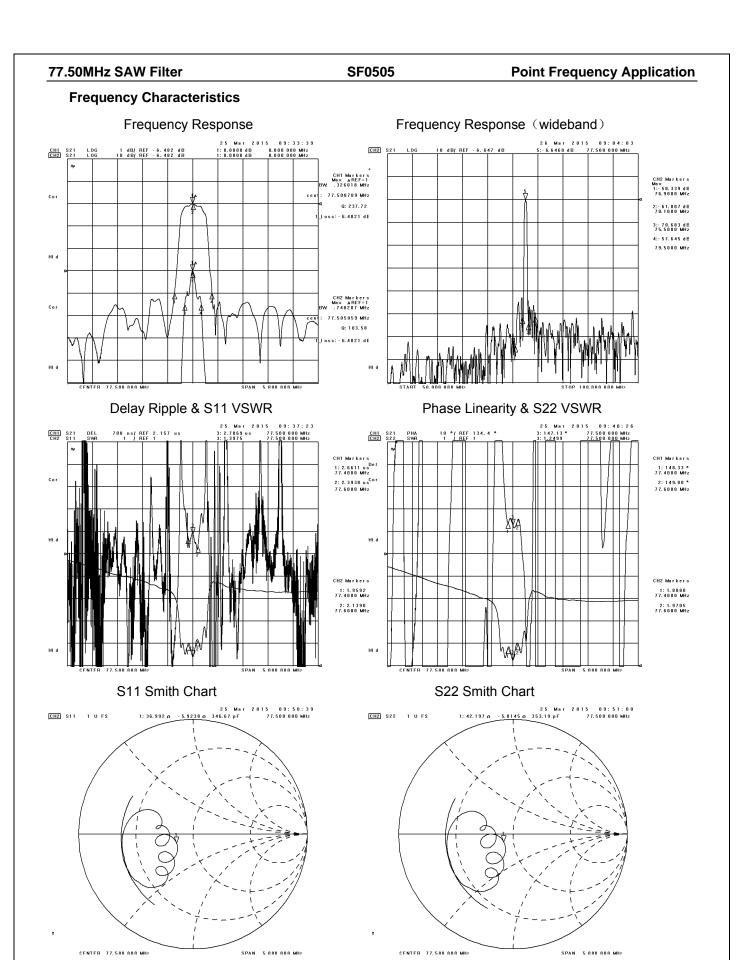
- 2 -

www.bjzxsf.net

2015/3/25

Performance

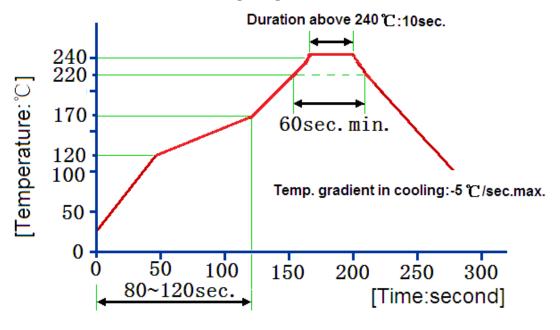
Maximum Rating


Item		Value	Unit
DC Voltage	V _{DC}	3	V
Operation Temperature	Т	-20~+70	${\mathbb C}$
Storage Temperature	T _{stg}	-55 ~ +125	${\mathbb C}$
RF Power Dissipation	Р	10	dBm

Electronic Characteristics

Test Temperature: $25^{\circ}C \pm 2^{\circ}C$

Terminating source impedance: 50Ω Terminating load impedance: 50Ω


Item		Minimum	Typical	Maximum	Unit
Center Frequency	fc		77.50		MHz
Insertion Loss(min)	IL		6.5	10.0	dB
Absolute Attenuation	а				
75.50-76.90MHz		40.0	43.0		dB
78.10-79.50MHz		40.0	45.0		dB

Reliability (The SAW components shall remain electrical performance after tests)

No.	Test item	Test condition		
1	Temperature	(1) Temperature: 85℃±2℃, Duration: 250h, Recovery time: 2h±0.5h		
1 Storage		(2) Temperature: –55°C±3°C , Duration: 250h ,Recovery time: 2h±0.5h		
2	Humidity Test	Conditions: 60℃±2℃, 90~95% RH Duration: 250h		
3	Thermal Shock	Heat cycle conditions: TA=-55℃±3℃, TB=85℃±2℃, t1=t2=30min, Switch		
3	Thermal Shock	time: ≤3min, Cycle time: 100 times, Recovery time: 2h±0.5h.		
4	Vibration Fatigue	Frequency of vibration: 10~55Hz Amplitude:1.5mm		
-	4 Vibration Fatigue	Directions: X,Y and Z Duration: 2h		
5	Drop Test	Cycle time: 10 times Height: 1.0m		
		Temperature: 245 ℃ ±5 ℃ Duration: 3.0s5.0s		
6 Solder Ability Test		Depth: DIP2/3 , SMD1/5		
		(1)Thickness of PCB:1mm , Solder condition: 260 ℃±5 ℃ , Duration: 10±1s		
7	Resistance to Soldering Heat	(2)Temperature of Soldering Iron: 350℃±10℃, Duration: 3~4s,		
		Recovery time: 2 ± 0.5h		

Recommended Reflow Soldering Diagram

Reflow cycles:3 cycles max.

Notes

- 1. As a result of the particularity of inner structure of SAW products, it easy to be breakdown by electrostatic, so we should pay attention to **ESD protect** in the test.
- 2. **Static voltage** between signal load and ground may cause deterioration and destruction of the component. Please avoid static voltage.
- 3. **Ultrasonic cleaning** may cause deterioration and destruction of the component. Please avoid ultrasonic cleaning.
- 4. Only leads of component may be soldered. Please avoid soldering another part of component.
- 5. There is a close relationship between the device's performance and **matching network**. The specifications of this device are based on the test circuit shown above. L and C values may change depending on board layout. Values shown are intended as a guide only.